
Fountain:
The Node Monitoring Component of a
Scalable Systems Software Environment

Master’s Oral Thesis Defense
major: Computer Engineering

Sam Miller
Scalable Computing Laboratory

Iowa State University
July 7, 2006

committee members

Brett Bode
ECpE

Srinivas Aluru
ECpE

Robyn Lutz
CS

Outline

• Problem statement & motivation (9 slides)

• Prior works (5 slides)

• System design (21 slides)

• Extensibility (9 slides)

• Results (12 slides)

• Conclusion (2 slides)

2

Problem Statement 1/4
• Parallel system size is expanding

• Percentage of top 500 systems with greater
than 1,025 processors:

3

0

10

20

30

40

11/04 06/05 11/05 06/06

%
 o

f t
op

 5
00

Problem Statement 2/4

• Scalability on hardware end is great

• Cluster management software does not scale
as well as the hardware does

• Computer industry not motivated to solve
this problem

• Home-grown management software will need
to be re-done as larger clusters are installed

4

Problem Statement 3/4

• Many resource management systems exist

• Portable Batch System (PBS) is popular

• Provide services to run user jobs, monitor
cluster status, collect output, etc.

• Transient connections are inefficient and
not scalable

• Larger clusters require more effective
solutions

5

Problem Statement 4/4

• Scalable Systems Software (SSS) effort

• Part of DOE SciDAC program

• Desire is to more effectively utilize next
generation computational resources

• Goal is to develop component based open
source cluster management software

• Modularity is a key goal, allows for
specialized components

6

Scalable Systems
Software

Service
Directory

Event
Manager

Queue
Manager

Scheduler

Node
Monitor

Process
Manager

Allocation
Management

Accounting

Interface to all
other components

7

Node Monitoring 1/4
• What is monitoring?

• Act of observing a signal

• Either reactive or periodic in nature

• What is node monitoring?

• Observe hard drive status, CPU usage, fan
speed, power supply temp, etc.

• collect this information for all cluster nodes

• node state is important
8

Node Monitoring 2/4

• Why is node monitoring necessary?

• Large clusters utilize batch systems to
schedule and run user jobs

• Effective scheduling requires accurate node
status

• Presents a single system image to a system
administrator

9

Node Monitoring 3/4

• Our node monitor is called Fountain

• Three distinct design goals

• Fault tolerant to handle node failures

• Low processing requirements

• Scalable to next generation hardware

• What was our motivation?

• Provide cluster scheduler with node state
10

Node Monitoring 4/4

• Prior works

• Ganglia - University of California Berkeley

• Supermon - Los Alamos National Lab

• NWPerf - Pacific Northwest National Lab

11

Ganglia 1/2

• Designed for clusters and grids

• Relies on multicast listen/announce protocol

• Configurable publishing thresholds for
different monitoring metrics

• Three components: clients, gmetad, gmond

• Novelty: minimal configuration

• Drawback: no cluster scheduler interface

12

Ganglia 2/2

Ganglia federates multiple clusters together using a tree of point-to-point connec-
tions. Each leaf node specifies a node in a specific cluster being federated, while
nodes higher up in the tree specify aggregation points. Since each cluster node con-
tains a complete copy of its cluster’s monitoring data, each leaf node logically rep-
resents a distinct cluster while each non-leaf node logically represents a set of
clusters. (We specify multiple cluster nodes for each leaf to handle failures.) Aggre-
gation at each point in the tree is done by polling child nodes at periodic intervals.
Monitoring data from both leaf nodes and aggregation points is then exported using
the same mechanism, namely a TCP connection to the node being polled followed by
a read of all its monitoring data.

4. Implementation

The implementation consists of two daemons, gmond and gmetad, a command-
line program gmetric, and a client side library. The Ganglia monitoring daemon
(gmond) provides monitoring on a single cluster by implementing the listen/
announce protocol and responding to client requests by returning an XML represen-
tation of its monitoring data. gmond runs on every node of a cluster. The Ganglia
Meta Daemon (gmetad), on the other hand, provides federation of multiple clus-
ters. A tree of TCP connections between multiple gmetad daemons allows monitor-
ing information for multiple clusters to be aggregated. Finally, gmetric is a
command-line program that applications can use to publish application-specific
metrics, while the client side library provides programmatic access to a subset of
Ganglia’s features.

4.1. Monitoring on a single cluster

Monitoring on a single cluster is implemented by the Ganglia monitoring daemon
(gmond). gmond is organized as a collection of threads, each assigned a specific task.

client

gmetad

gmetad

gmetad

Node

gmond

Node

gmond

Node

gmond. . .
Node

gmond

Node

gmond

Node

gmond. . .

dataconnect

failoverpoll

poll poll

failoverpoll

Cluster Cluster

XML over TCP

XDR over UDP

Fig. 1. Ganglia architecture.

822 M.L. Massie et al. / Parallel Computing 30 (2004) 817–840

13

Supermon 1/2

• Designed for high speed monitoring

• Three components: kernel module, node
daemon, data aggregator

• Each uses symbolic expressions (S-
expressions from LISP)

• Novelty: very high speed

• Drawback: no memory usage monitoring, no
cluster scheduler interface

14

Supermon 2/2

Supermon

mon

/proc

mon

/proc

mon

/proc

supermon

. . .
Node nNode 2Node 1

Client

Figure 1. The major architectural components
of Supermon and their relationships.

Figure 2. Supermon output from the kernel
module for the S command.

3.2 The Kernel Module

!"#$%%&'()*+#,+-.%+/000+/(-%"(1-'#(12+3#(,%"%($%+#(+324*-%"+3#564-'()+7389:;0<=>?@+

>ABCDEAFBGEAEH>?+IFBJ>>+K+?>>?+!"""#

15

NWPerf

• Designed for low-impact, high resolution
monitoring

• Goal is to monitor behavior of user
applications

• Three components: lightweight client per
node, server side packet handler, external
storage system

• Drawback: no scheduler interface, targeted
more towards analysis purposes

16

Fountain Design 1/3

• Four separate components

• server (head node)

• master daemon (head node)

• slave daemon (each compute node)

• client utilities (anywhere)

17

Fountain Design 2/3

Fountain server

Fountain master daemon

Fountain slave daemon

Persistent socket connections

Transient socket connections

Fountain client utilities

18

overview of the four Fountain components and
how they interact with each other

Fountain Design 3/3

• Components communicate using XML
messages over TCP sockets

• Both persistent and transient sockets

• Required environment:

• Linux

• TCP connected hosts

19

Slave daemon

• Slave Fountain daemons run on each compute
node in the cluster, how they start is not
important

• Arranged in a rigid topology by the master
daemon (more info later)

• Two purposes

• collect monitored metrics

• report neighboring daemon failures

20

Monitored Metrics

• Static: CPU, memory, swap space

• Dynamic: CPU usage, available memory,
available swap

• Collected from the /proc file system in Linux

• node state is NOT collected, more on this
later

21

Slave daemon

• Each slave daemon has:

• a persistent connection to a
parent daemon

• up to n persistent
connections to child
daemons

• number of children depend
on tree topology config

22

1

4

13 14 15

Slave daemon

• Monitoring metrics are collected on demand
by Fountain server (more on this later)

• Otherwise slave daemons are essentially idle

• sleep in a select system call waiting for I/O

• Promotes low node overhead

23

Master daemon

• Same functionality as slave daemon

• Added requirement of maintaining topology
of slave daemons

• We chose a tree topology

• Promotes good scalability

• Recovering from node failures is somewhat
difficult

24

Master daemon
• Fountain tree topology is a complete n-ary

topology

• Each node has up to n children

• Each level is full except the bottom level

• Bottom level is filled left to right

25

Master daemon

• Fountain uses three algorithms to maintain
the tree topology in the presence of failures

• Tree establishment

• Tree recovery

• Tree rebuilding

26

Tree Establishment

master
Fountain
daemon

slave
Fountain
daemon

requesting to
join the tree

joinRequest

joinAccept

joinAck

slave
Fountain
daemon

already in
the tree

joinRequest

joinAccept

joinAck

T
im

e

27

Tree Recovery 1/3

28

master Fountain daemon

slave Fountain daemon

permanent connection

lost parent request

lost child request

new parent request

0

1 2 3

4 5 6 7 8 9 10 11 12

13 14 15 16

Tree Recovery 2/3

29

0

1 2 3

16 5 6 7 8 9 10 11 12

13 14 15

Tree Recovery 3/3

• Why wait for all neighbors
to report failure?

• assume only the parent
reports failure

• what happens to nodes
13, 14, and 15 when
nodes 1 and 4 fail
concurrently?

30

1

4

13 14 15

Tree Rebuilding

31

step 1 step 2

master Fountain daemon

slave Fountain daemon

permanent connection

lost parent request

rejoin response

closed connection

0

1 2 3

4 5 6 7

0

1 2 3

4 5 6 7

Fountain server 1/5

• Acts as a gateway between Fountain daemons
and other SSS components

• Presents a single system image to clients

• stores monitoring info from daemons

• Responds to client requests

• It has a very flexible interface by utilizing the
SSS Node Monitor and Node Object spec

32

Fountain server 2/5
Request:

<Envelope>
 <Body actor="samm">
 <Request action="Query">
 <Object>Node</Object>
 <Get name="NodeId"></Get>
 <Get name="NodeState"></Get>
 <Where name="NodeState" op="eq">Down</Where>
 </Request>
 </Body>
</Envelope>

Response:
<Envelope>
 <Body actor="root">
 <Response action="Query">
 <Count>2</Count>
 <Total>34</Total>
 <Data name="NodeList" type="xml">
 <Node>
 <NodeId>m20</NodeId>
 <State>Down</State>
 </Node>
 <Node>
 <NodeId>m34</NodeId>
 <State>Down</State>
 </Node>
 </Data>
 <Status>
 <Value>Success</Value>
 <Code>000</Code>
 <Message>2 node(s) found</Message>
 </Status>
 </Response>
 </Body>
</Envelope>

33

Fountain server 3/5
Request:

<Envelope>
 <Body actor="root">
 <Request action="Query">
 <Object>Node</Object>
 <Get name="NodeId"></Get>
 <Get name="Arch"></Get>
 <Get name="OpSys"></Get>
 <Get name="State"></Get>
 <Where name="State" op="eq">Up</Where>
 <Get name="Configured/Processors"></Get>
 <Where name="Configured/Processors" op="ge">2</Where>
 <Get name="Available/Memory" units="MB"></Get>
 <Where name="Available/Memory" op="ge" units="MB">128</Where>
 </Request>
 </Body>
</Envelope>

Response:
<Envelope>
 <Body actor="root">
 <Response action="Query">
 <Count>1</Count>
 <Total>34</Total>
 <Data name="NodeList" type="xml">
 <Node>
 <State>Up</State>
 <NodeId>m17</NodeId>
 <Arch>ppc</Arch>
 <OpSys>Linux</OpSys>
 <Configured>
 <Processors>2</Processors>
 </Configured>
 <Available>
 <Memory units="MB">819.5</Memory>
 </Available>
 </Node>
 </Data>
 <Status>
 <Value>Success</Value>
 <Code>000</Code>
 <Message>1 node(s) found</Message>
 </Status>
 </Response>
 </Body>
</Envelope>

34

Fountain server 4/5
• Utilizes a node monitor database

• Actually a C++ map container from STL

• Node’s hostname is the key, object to hold
node statistics is the value

• Three ways to populate this database

• Query response from Fountain daemons

• Parsing nodelist file

• Discovering a server-specific data source
35

Node Query 1/2

• Fountain server periodically sends a query
request to the master daemon

• master responds w/ query response

• message contains info for all daemons

• Node state calculated from query response

• Three states: up, down, unavailable

36

Node Query 2/2

37

Fountain server

Fountain master daemon

Fountain slave daemon

query request

query response

Extensibility 1/2

• Thus far, only node specific data sources have
been discussed

• Other potential sources for monitoring
information exist

• Parallel file systems (PVFS, GPFS, Lustre)

• Network information (gigabit ethernet,
InfiniBand, Myrinet)

• Such information could be beneficial

38

Extensibility 2/2

• Fountain currently has two modules to
extend its monitoring capabilities

• InfiniBand module

• Cray XT3 module

• Integrated into the Fountain server

• In some cases, node daemon functionality is
disabled because it does not make sense

39

InfiniBand 1/5

• Modern interconnection architecture

• 3rd most popular on 27th top 500 list

• behind Myrinet (2nd) and gigabit ethernet
(1st)

• Utilizes a bidirectional serial bus

• Links can be aggregated: 1x, 4x, 12x

• 12X double data rate (DDR) can carry 60
gigabits/second

40

InfiniBand 2/5
• Open InfiniBand Alliance (OpenIB)

• Open source IB software stack

• Supports HCAs from multiple vendors

• Interface accepted into Linux kernel

• We desired two features

• Discover IB network

• Poll each discovered node for port counter
information

41

InfiniBand 3/5

• Motivation for this module came from SC|05

• Desire was to make a visual map of nodes

• Overlay performance & error counters

• Extend this idea to clusters

• User can overlay network topology to
monitor job status

42

InfiniBand 4/5

43

Request:

<Envelope>
 <Body actor="samm">
 <Request action="Query">
 <Object>Node</Object>
 <Get name="NodeId"></Get>
 <Get name="Network"></Get>
 </Request>
 </Body>
</Envelope>

Response:
<Node>
 <NodeId>0002c90200003448</NodeId>
 <Arch>Infiniband</Arch>
 <Network type="Infiniband">
 <Device>
 <ID>0002c90200003448</ID>
 <Vendor>Redswitch</Vendor>
 <Lid>35</Lid>
 <Description>MT23108 InfiniHost Mellanox Technologies</Description>
 <Type>HCA</Type>
 <Ports>
 <PortCount>2</PortCount>
 <Port>
 <Number>1</Number>
 <RemoteDevice port="2">0002c90109fb36b8</RemoteDevice>
 <SendBytes units="bytes">648</SendBytes>
 <ReceiveBytes units="bytes">576</ReceiveBytes>
 <SendRate>
 <Bytes>39.865</Bytes>
 <Packets>0.554</Packets>
 </SendRate>
 <ReceiveRate>
 <Bytes>39.865</Bytes>
 <Packets>0.554</Packets>
 </ReceiveRate>
 <SymbolErrors>60</SymbolErrors>
 <Counters>true</Counters>
 <LastSeen>Mon Jun 5 15:09:38 2006</LastSeen>
 <Width>4X</Width>
 <Speed units="Gigabits/sec">2.5</Speed>
 </Port>
 </Ports>
 </Device>
 </Network>
</Node>

InfiniBand 5/5

44

Cray XT3 1/2

• Massively parallel processing (MPP) system

• Developed by Sandia and Cray Inc.

• Contains between 200 and up to 30,000
processors

• Built-in management software presents a
single system image

45

Cray XT3 2/2

• Fountain module for XT3 acts as a wrapper

• Discovers number of installed processors

• Updates number of available processors
periodically

• Provides this information to the cluster
scheduler

• Not yet feature complete

• Created to test feasibility of this application

46

Test Environment 1/3

• Two test environments

• Scink: 64 node dual AMD Athlon MP2200
cluster with 100 Mbit ethernet

• 4pack: 34 node heterogeneous PowerPC
G4 Macintosh cluster

• Both run Debian Linux

• Larger configurations are tested with
multiple Fountain daemons per node

47

Test Environment 2/3

• Following results are of interest

• Time to query various configurations of
Fountain daemons

• Time to recovery tree topology from single
and multiple failures

• Time to rebuild tree topology (worst case)

• Quantify compute node overhead

48

Test Environment 3/3

• Why are these results important?

• Original design goals were: fault tolerance,
low overhead, good scalability

• Scalability: time to query should scale
somewhat linearly with number of nodes

• Fault tolerance: recovery time should not
depend on number of nodes

49

Node Query Results 1/2

50

 0

 100

 200

 300

 400

 500

 600

 700

 0 50 100 150 200 250 300

Q
u

e
ry

 t
im

e
 (

m
ill

is
e

co
n

d
s)

Total system size (number of nodes)

binary tree
ternary tree

4-ary tree
5-ary tree

Elapsed node query time (milliseconds) on 4pack
using 16 different tree configurations

Node Query Results 2/2

51

 0

 200

 400

 600

 800

 1000

 1200

 0 100 200 300 400 500 600 700 800 900 1000 1100

Q
u
e
ry

 t
im

e
 (

m
ill

is
e
co

n
d
s)

Total system size (number of nodes)

binary tree
ternary tree

4-ary tree
5-ary tree

Elapsed node query time (milliseconds) on Scink
using 16 different tree configurations

Tree Recovery 1/3

• Recovering from a single node failure

• Measured as time when first node reports
failure, until replacement node is connected

• We expect tree topology with larger
degree to require more time

• Good scalability is important here, failure
rates will rise as cluster sizes increase

52

Tree Recovery 2/3

53

 100

 150

 200

 250

 300

 0 100 200 300 400 500

tim
e
 (

m
ill

is
e
co

n
d
s)

Tree Topology size

2-ary
3-ary
4-ary
5-ary

recovering from a single node failure
34 daemons on 4pack

65, 129, 257, and 513 daemons on Scink

Tree Recovery 3/3

54

recovering from multiple node
failures on both 4pack and Scink

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1.5 2 2.5 3 3.5 4 4.5 5 5.5

tim
e
 (

se
co

n
d
s)

Number of failed daemons

4pack 2-ary
4pack 3-ary
4pack 4-ary
4pack 5-ary

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

tim
e
 (

se
co

n
d
s)

Scink 2-ary
Scink 3-ary
Scink 4-ary
Scink 5-ary

Tree Rebuilding 1/2

• This algorithm is a last ditch effort if recovery
is not possible

• Requires master daemon to talk with each
slave daemon in the system (EXPENSIVE)

• Performance numbers here are the result of a
forced rebuild

55

Tree Rebuilding 2/2

56

 3

 4

 5

 6

 7

 8

 9

 10

 11

 0 20 40 60 80 100 120 140 160

tim
e

 (
se

co
n

d
s)

Tree topology size

4pack 2-ary
4pack 3-ary
4pack 4-ary
4pack 5-ary

 3

 4

 5

 6

 7

 8

 9

 10

 11

tim
e

 (
se

co
n

d
s)

Scink 2-ary
Scink 3-ary
Scink 4-ary
Scink 5-ary

rebuilding the tree topology
on both 4pack and Scink

Node Overhead
• Design goal was low node overhead

• Compute nodes especially

• Can be quantified in terms of CPU usage and
network bandwidth

• Several parameters can affect these numbers

• Location in tree topology

• Fountain server query interval

• Size of tree topology
57

Node Overhead
(in terms of query interval and tree size)

58

0

1.25

2.50

3.75

5.00

0 1 2

30s & 33 30s & 65 15s & 33 15s & 65

level in tree topology

ba
nd

w
id

th
 u

se
d

(K
B/

se
c)

Future Work

• Consider use of threads and non-blocking
sockets

• Consider multiple master daemons and
server processes for fault tolerance

• Find optimal tree topology degree based on
cluster information

• Improve Goanna administrative GUI

59

Conclusion

• Fountain is a node monitor for the Scalable
Systems Software project

• It utilizes a component based design to pull
information from each node in the cluster

• Our major research contribution is the use of a
rigid tree topology of persistent daemons

• Promotes good scalability

• Recovering from failures depends on the
topology degree

60

Publications

• S. Miller and B. Bode. The Node Monitoring
Component of a Scalable Systems Software
Environment. In Proceedings, IEEE International
Conference on Parallel and Distributed Systems.
Minneapolis, MN, July 2006.

61

Acknowledgments

• Thank you for attending today

• Special thanks to SCL staff & colleagues

• This research project is supported by the
United States Department of Energy

• The two clusters used to develop and test
this research are supported by the DOE
MICS office

62

Questions?

